Package: DRHotNet 2.3
DRHotNet: Differential Risk Hotspots in a Linear Network
Performs the identification of differential risk hotspots (Briz-Redon et al. 2019) <doi:10.1016/j.aap.2019.105278> along a linear network. Given a marked point pattern lying on the linear network, the method implemented uses a network-constrained version of kernel density estimation (McSwiggan et al. 2017) <doi:10.1111/sjos.12255> to approximate the probability of occurrence across space for the type of event specified by the user through the marks of the pattern (Kelsall and Diggle 1995) <doi:10.2307/3318678>. The goal is to detect microzones of the linear network where the type of event indicated by the user is overrepresented.
Authors:
DRHotNet_2.3.tar.gz
DRHotNet_2.3.zip(r-4.5)DRHotNet_2.3.zip(r-4.4)DRHotNet_2.3.zip(r-4.3)
DRHotNet_2.3.tgz(r-4.4-any)DRHotNet_2.3.tgz(r-4.3-any)
DRHotNet_2.3.tar.gz(r-4.5-noble)DRHotNet_2.3.tar.gz(r-4.4-noble)
DRHotNet_2.3.tgz(r-4.4-emscripten)DRHotNet_2.3.tgz(r-4.3-emscripten)
DRHotNet.pdf |DRHotNet.html✨
DRHotNet/json (API)
# Install 'DRHotNet' in R: |
install.packages('DRHotNet', repos = c('https://albrizre.r-universe.dev', 'https://cloud.r-project.org')) |
- SampleMarkedPattern - Marked point pattern on a road network simulating traffic accident locations
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:75fc062c3b. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | OK | Nov 20 2024 |
R-4.5-linux | OK | Nov 20 2024 |
R-4.4-win | OK | Nov 20 2024 |
R-4.4-mac | OK | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:drhotdrsensdrsummaryNeighbourhoodMatrixNetworkplothotplotrelprelpnet
Dependencies:abindbootclassclassIntDBIdeldire1071goftestKernSmoothlatticemagrittrMASSMatrixmgcvnlmePBSmappingpolyclipproxyrasterRcpprparts2sfspspatstatspatstat.dataspatstat.explorespatstat.geomspatstat.linnetspatstat.modelspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsspDataspdeptensorterraunitswk